首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17415篇
  免费   1348篇
  国内免费   1416篇
  2024年   12篇
  2023年   264篇
  2022年   340篇
  2021年   1061篇
  2020年   661篇
  2019年   897篇
  2018年   854篇
  2017年   641篇
  2016年   889篇
  2015年   1163篇
  2014年   1408篇
  2013年   1545篇
  2012年   1631篇
  2011年   1466篇
  2010年   871篇
  2009年   774篇
  2008年   876篇
  2007年   738篇
  2006年   593篇
  2005年   521篇
  2004年   430篇
  2003年   368篇
  2002年   272篇
  2001年   250篇
  2000年   222篇
  1999年   232篇
  1998年   159篇
  1997年   135篇
  1996年   119篇
  1995年   110篇
  1994年   103篇
  1993年   87篇
  1992年   102篇
  1991年   100篇
  1990年   52篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   16篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
991.
Resistance towards imatinib (IM) remains troublesome in treating many chronic myeloid leukemia (CML) patients. Heme oxygenase-1 (HO-1) is a key enzyme of antioxidative metabolism in association with cell resistance to apoptosis. Our previous studies have shown that overexpression of HO-1 resulted in resistance development to IM in CML cells, while the mechanism remains unclear. In the current study, the IM-resistant CML cells K562R indicated upregulation of some of the histone deacetylases (HDACs) compared with K562 cells. Therefore, we herein postulated HO-1 was associated with HDACs. Silencing HO-1 expression in K562R cells inhibited the expression of some HDACs, and the sensitivity to IM was increased. K562 cells transfected with HO-1 resisted IM and underwent obvious some HDACs. These findings related to the inhibitory effects of high HO-1 expression on the reactive oxygen species (ROS) signaling pathway that negatively regulated HDACs. Increased expression of HO-1 activated HDACs by inhibiting ROS production. In summary, HO-1, which is involved in the development of drug resistance in CML cells by regulating the expression of HDACs, is probably a novel target for improving CML therapy.  相似文献   
992.
993.
994.
The brain-derived neurotrophic factor (BDNF) was first recognized for its roles in the peripheral and central nervous systems, and its complex functions on mammalian organs have been extended constantly. However, to date, little is known about its effects on the male reproductive system, including the steroidogenesis of mammals. The purpose of this study was to elucidate the effects of BDNF on testosterone generation of Leydig cells and the underlying mechanisms. We found that BDNF-induced proliferation of TM3 Leydig cells via upregulation of proliferating cell nuclear antigen ( Pcna) and promoted testosterone generation as a result of upregulation of steroidogenic acute regulatory protein ( Star), 3b-hydroxysteroid dehydrogenase ( Hsd3b1), and cytochrome P450 side-chain cleavage enzyme ( Cyp11a1) both in primary Leydig cells and TM3 Leydig cells, which were all attenuated in Bdnf knockdown TM3 Leydig cells. Furthermore, the possible mechanism of testosterone synthesis was explored in TM3 Leydig cells. The results showed that BDNF enhanced extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation, and the effect was disrupted by Bdnf deletion. Moreover, PD98059, a potent selective inhibitor of ERK1/2 activation, compromised BDNF-induced testosterone generation and upregulation of Star, Hsd3b1, and Cyp11a1. The Bdnf knockdown assay, on the other hand, indicated the autocrine effect of BDNF on steroidogenesis in TM3 Leydig cells. On the basis of these results, we concluded that BDNF, acting as an autocrine factor, induced testosterone generation as a result of the upregulation of Star, Hsd3b1, and Cyp11a1 via stimulation of the ERK1/2 pathway.  相似文献   
995.
Cervical cancer is the fourth most common malignancy in women worldwide and cervical squamous cell carcinoma (CESC) is the most common histological type of cervical cancer. The dysregulation of genes plays a significant role in cancer. In the present study, we screened out differentially expressed genes (DEGs) of CESC in the GSE63514 data set from the Gene Expression Omnibus database. An integrated bioinformatics analysis was used to select hub genes, as well as to investigate their related prognostic signature, functional annotation, methylation mechanism, and candidate molecular drugs. As a result, a total of 1907 DEGs were identified (944 were upregulated and 963 were downregulated). In the protein–protein interaction network, three hub modules and 30 hub genes were identified. And two hub modules and 116 hub genes were screened out from four CESC-related modules by the weighted gene coexpression network analysis. The gene ontology term enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed to better understand functions and pathways. Genes with a significant prognostic value were found by prognostic signature analysis. And there were five genes (EPHX2, CHAF1B, KIAA1524, CDC45, and RMI2) identified as significant CESC-associated genes after expression validation and survival analysis. Among them, EPHX2 and RMI2 were noted as two novel key genes for the CESC-associated methylation and expression. In addition, four candidate small molecule drugs for CESC (camptothecin, resveratrol, vorinostat, and trichostatin A) were defined. Further studies are required to explore these significant CESC-associated genes for their potentiality in diagnosis, prognosis, and targeted therapy.  相似文献   
996.
Hypoxia is a common biological hallmark of solid cancers, which has been proposed to be associated with oncogenesis and chemotherapy resistance. The purpose of the present study was to investigate the role and underlying mechanisms of olfactomedin 4 (OLFM4) in the hypoxia-induced invasion, epithelial–mesenchymal transition (EMT), and chemotherapy resistance of non-small-cell lung cancer (NSCLC). We observed dramatically upregulated expression of OLFM4 in several NSCLC cell lines, and this effect was more pronounced in A549 and H1299 cells. In addition, our data revealed that OLFM4 expression was remarkably increased in both A549 and H1299 cells under hypoxic microenvironment, accompanied by enhanced levels of hypoxia-inducible factor (HIF)-1α protein. The HIF-1α level was elevated in response to hypoxia, resulting in the regulation of OLFM4. Interestingly, OLFM4 was a positive regulator of hypoxia-driven HIF-1α production. Moreover, depletion of OLFM4 modulated multiple EMT-associated proteins, as evidenced by the enhanced E-cadherin levels along with the diminished expression of N-cadherin and vimentin in response to hypoxia, and thus blocked invasion ability of A549 and H1299 cells following exposure to hypoxia. Furthermore, ablation of OLFM4 accelerated the sensitivity of A549 cells to cisplatin under hypoxic conditions, implying that OLFM4 serves as a key regulator in chemotherapeutic resistance under hypoxia. In conclusion, OLFM4/HIF-1α axis might be a potential therapeutic strategy for NSCLC.  相似文献   
997.
Atherosclerosis (AS), a progressive disorder, is one of the tough challenges in the clinic. Scutellarin, an extract from Herba Erigerontis, is found to have oxygen-free radicals scavenging effects and antioxidant effects. In this study, we aimed to investigate the anti-AS effects of scutellarin is related to controlling the Hippo–FOXO3A and PI3K/AKT signal pathway. To establish an AS model, the rats in the scutellarin and model groups were intraperitoneally injected with vitamin D 3 and then fed a high-fat diet for 12 weeks. In addition, in vitro angiotensin II-induced apoptosis of human aortic endothelial cells (HAECs) were used to establish models. Scutellarin significantly reduced blood lipid levels and increased antioxidase levels in both models. Additionally, scutellarin inhibited reactive oxygen species generation and apoptosis in HAECs. The impaired vascular barrier function was restored by using scutellarin in AS rats and in HAECs cells characterized by inhibiting mammalian sterile-20-like kinases 1 (Mst1) phosphorylation, Yes-associated protein (YAP) phosphorylation, forkhead box O3A (FOXO3A) phosphorylation at serine 207, nuclear translocation of FOXO3A, and upregulating protein expression of AKT and FOXO3A phosphorylation at serine 253. Scutellarin significantly reduced Bcl-2 interacting mediator of cell death (Bim), caspase-3, APO-1, CD95 (Fas), and Bax: Bcl-2-associated X (Bax) levels and activated Bcl-2: B-cell lymphoma-2 (Bcl-2). Scutellarin also significantly inhibited the expression of Mst1, YAP, FOXO3A at the messenger RNA level. When Mst1 was overexpressed or phosphoinositide 3-kinases suppressed, the effects of scutellarin were significantly blocked. In conclusion, the results of the present study suggest that scutellarin exerts protective effects against AS by inhibiting endothelial cell injury and apoptosis by regulating the Hippo–FOXO3A and PI3K/AKT signal pathways.  相似文献   
998.
Oxidized low-density lipoprotein (Ox-LDL)-induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin-3 (Gal-3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal-3 in ox-LDL-mediated endothelial injury remains unclear. This study explores the effects of Gal-3 on ox-LDL-induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal-3, integrin β1, and GTP-RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non-AS control group. CCK8 assay and flow cytometry analysis showed that Gal-3 significantly decreased cell viability and promoted apoptosis in ox-LDL-treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP-RhoA, p-JNK, p-p65, p-IKKα, and p-IKKβ induced by ox-LDL was further enhanced by treatment with Gal-3. Pretreatment with Gal-3 increased expression of inflammatory factors (interleukin [IL]-6, IL-8, and IL-1β), chemokines(CXCL-1 and CCL-2) and adhesion molecules (VCAM-1 and ICAM-1). Furthermore, the promotional effects of Gal-3 on NF-κB activation and inflammatory factors in ox-LDL-treated HUVECs were reversed by the treatments with integrinβ1-siRNA or the JNK inhibitor. We also found that integrinβ1-siRNA decreased the protein expression of GTP-RhoA and p-JNK, while RhoA inhibitor partially reduced the upregulated expression of p-JNK induced by Gal-3. In conclusion, our finding suggests that Gal-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation.  相似文献   
999.
Angiogenesis is positively correlated with the survival rate of stroke patients. Therefore, studying factors that initiate and promote angiogenesis after ischemic stroke is crucial for finding novel and effective treatment targets that improve the prognosis of stroke. X-box binding protein l splicing (XBP1s) plays a positive regulatory role in cell proliferation and angiogenesis. However, the role and mechanism of XBP1s on the proliferation of brain microvascular endothelial cells (BMECs) and angiogenesis after cerebral ischemia remains unclear. In the current study, we investigated the role XBP1s plays in BMEC proliferation and angiogenesis following cerebral ischemia. In this study, the roles of XBP1s on cell survival, apoptosis, cycle migration, and angiogenesis were determined in oxygen-glucose deprivation (OGD) treated BMECs. The expression of XBP1s in BMECs, which were exposed to OGD at 0, 2, 4, and 6 hr, increased in a time-dependent manner. The overexpression of XBP1s promoted cell survival, cell cycle, migration, and angiogenesis of BMECs, and inhibited the apoptosis in OGD-treated BMECs. In addition, the overexpression of XBP1s promoted the expression of cyclin D1, matrix metalloproteinase (MMP-2), and MMP-9, but inhibited cleaved Caspase-3 and cleaved Caspase-9 expression in OGD-treated BMECs. The overexpression of XBP1s also promoted the expression of hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, phosphatidylinositol-4,5-bisphosphate 3-kinase, p-AKT, p-mTOR, p-GSK3β, and p-extracellular signal-regulated kinase1/2 in OGD-treated BMECs. The effect of XBP1s silencing was opposite to that of XBP1s overexpression. In conclusion, using an in vitro OGD model, we demonstrated that XBP1s may be a promising target for ischemic stroke therapy to maintain BMECs survival and induce angiogenesis.  相似文献   
1000.
Histone deacetylases (HDACs) are involved in a wide array of biological processes. However, the role of HDAC3 in porcine oocytes remains unclear. In the current study, we examine the effects of HDAC3 inhibition on porcine oocyte maturation using RGFP966, a selective HDAC3 inhibitor. We find that suppression of HDAC3 activity prevents not only the expansion of cumulus cells but also the meiotic progression of oocytes. It is interesting to note that HDAC3 displays a spindle-like distribution pattern as the porcine oocytes enter meiosis. In line with this, confocal microscopy reveals the high frequency of spindle defects and chromosomal congression failure in metaphase oocytes exposed to RGFP966. Moreover, HDAC3 inhibition results in the hyperacetylation of α-tubulin during oocyte meiosis. These findings indicate that HDAC3 activity might control the microtubule stability via the deacetylation of tubulin, which is critical for maintaining the proper spindle assembly, accurate chromosome separation, and orderly meiotic progression during porcine oocyte maturation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号